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EXECUTIVE SUMMARY 

This report presents a new paradigm for Mobile Edge Learning (“MEL”) that enables the 

implementation of realistic distributed machine learning (DML) tasks on wireless edge nodes 

while taking into consideration heterogeneous computing and networking environments. A 

heterogeneity aware (HA) scheme was designed to solve the problem of dynamic task allocation 

for MEL in a way that maximizes the DML accuracy over wireless heterogeneous nodes or 

“learners” while respecting time constraints, enabling context aware vehicle to everything (V2X) 

communication. The problem was first formulated as a quadratically constrained integer linear 

program (QCILP). Being non-deterministic polynomial-time (NP)-hard, it was relaxed into a 

non-convex problem over real variables that could be solved by using commercially available 

numerical solvers. The relaxation also allowed us to propose a solution based on deriving the 

analytical upper bounds of the optimal solution using Lagrangian analysis and Karush-Kuhn-

Tucker (KKT) conditions. The merits of the proposed analytical solution were demonstrated by 

comparing its performance to numerical approaches and comparing the validation accuracy of 

the proposed HA scheme to a baseline heterogeneity unaware (HU) equal task allocation 

approach. Simulation results showed that the HA schemes decreased convergence time up to 56 

percent and increased the final validation accuracy up to 8 percent. 
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CHAPTER 1 INTRODUCTION 

Accelerated migration toward the deployment of smart infrastructure has resulted in the 

accumulation of many Internet-of-things (IoT) devices that generate huge amounts of data at the 

network edge. The transfer of such huge volumes of data distributed across multiple 

heterogeneous wireless networks to cloud servers for centralized processing faces many 

challenges in terms of latency, bandwidth, security, and privacy [2]. It is anticipated that edge 

servers or even processors/controllers attached to edge devices such as smart phones, drones, and 

closed-circuit cameras will perform 90 percent of the analytics [3]. Paradigms such as mobile 

edge computing (MEC) and hierarchical-MEC (H-MEC) [4], [5] can optimize the offloading and 

distribution of computational tasks. Although these approaches consider computing and 

communication heterogeneity, they do not consider the specifics of machine learning (ML)-

based analytics across heterogeneous edge nodes. Hence, they are not suited to perform ML tasks 

in a distributed manner, a.k.a. distributed ML (DML) at the edge [1], [6], [7]. 

DML has recently attracted significant attention within the machine learning realm, 

motivated by two distinct yet related practical scenarios: distributed datasets (DD), which are 

usually referred to as federated learning (FL) in the literature [8], and task parallelization (TP). In 

DD, (big) datasets are separately generated/collected by multiple devices but cannot be 

transferred to a central hub because of some constraints (e.g., bandwidth, privacy) [6]. In this 

case, the learning process runs in sequential phases: nodes (a.k.a. learners) perform local 

training/learning on their individual datasets; then a central orchestrator collects locally updated 

models, performs global processing, and returns the globally updated model to the learners for 

the next phase. On the other hand, TP usually involves a node that parallelizes the learning 

process by distributing its locally generated dataset to multiple cores/nodes for local training 

followed by global updates [1]. Therefore, this main node acts as the orchestrator of the learning 

process. 

This work introduces the novel “Mobile Edge Learning (MEL)” paradigm, which can 

accommodate both DD and TP. A unified model is important because each approach can be used 

to achieve different objectives for edge DML. DD is mainly used for preserving privacy and has 

been applied in areas such as healthcare [9] and vehicular networks [10]. In contrast, TP is not 

widely studied but can be applicable in cases where communication capabilities outweigh the 

computational resources. Moreover, it can offer some level of privacy in comparison to cloud-
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based approaches by keeping data within the confines of a trusted edge environment. One 

applicable scenario would be an orchestrator such as an edge server that utilizes the resources of 

idle end devices and fog nodes [11]. Another example application is a set of drones flying 

together to capturing aerial scans from different angles. If an image from a particular direction 

needs to be analyzed on-board, the relevant drone may distribute the data to its peers for learning. 

Privacy-preserving TP can be applied for medical diagnostics with ML at the edge or for 

continuous monitoring of vulnerable adults in a care home setting where multiple sensors 

collecting data can collaborate with a trusted edge server. The design of recent incentive 

mechanisms for FL may facilitate the adoption of TP [12], [13]. 

Although DML was initially studied for wired/non-heterogeneous environments [14], 

[15], extending these DML studies to resource-constrained edge environments has gained 

significant importance. However, early works such as Wang et al. [7], Tuor et al. [16], Wang et 

al, [17], and Conway-Jones et al. [18] were heterogeneity unaware (HU); they did not consider 

the inherent heterogeneities in the computing and communication capacities of different edge 

learners and links, respectively. The implications of such heterogeneities for optimal task 

allocation, model selection, accuracy enhancement, and promoting time and energy efficient 

techniques are clearly game-changing but have only been recently investigated [19], [20], [21], 

[22]. However, these works have focused only on FL and optimizing the number of local updates 

without any task size allocation. 

To the best of our knowledge, this work is the first attempt toward establishing an 

optimization framework that can enable efficient execution of DML tasks on a set of neighboring 

heterogeneous wireless edge nodes. Specifically, the report provides the following contributions: 

• Inaugurates the MEL research by considering both distinct scenarios of DD (FL) and TP, as 

opposed to previous works that have only considered DD. This separates MEL from FL. 

• Designs a dynamic task allocation mechanism, referred to as the heterogeneity aware (HA) 

scheme, which maximizes the learning accuracy in a heterogeneous environment while 

satisfying time constraints. 

• Jointly considers the impacts of dataset size allocation and number of local updates, in 

contrast to previous works, which have considered only local updates. 

• Derives a low-cost approach to solve the main optimization problem in the proposed HA 

scheme, which significantly reduces execution time. 
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• Presents a quantitative heterogeneity analysis and clearly highlights the gains achieved by 

the HA schemes with increasing heterogeneity and enabling context-aware cellular vehicle 

to everything (CV2X) communication. 

• Demonstrates the superiority of the proposed HA approach in terms of convergence time 

reduction and final validation accuracy improvement. 

As demonstrated by Wang et al. [7], the learning accuracy in edge environments can be 

maximized by maximizing the number of local updates in between every global update. To this 

end, the problem for both the TP and DD scenarios is first formulated as a quadratically-

constrained integer linear program (QCILP), which is a non-deterministic polynomial-time (NP)-

hard problem. The problem is then relaxed to its real-valued counterpart, which is still non-

convex. A solution is then proposed for the original problem based on the analytical upper 

bounds derived from the Karush-Kuhn-Tucker (KKT) conditions. The merits of this proposed 

solution for the HA schemes are shown by comparing its performances against solutions from 

both the numerical optimizer and the heterogeneity-unaware (HU) equal task allocation approach 

[7], [16]. This comparison was done for TP and DD in two types of environments (indoor - 

802.11 type and outdoor - cellular type) with two different datasets. The results demonstrated 

that the proposed HA schemes perform better in terms of achievable updates and learning 

accuracy than the HU approaches. 

The remainder of this report is organized in the following way. Chapter 2 introduces 

preliminaries on DML models and their transition to MEL. The problem of interest in this report 

is formulated in Chapter 3, and our proposed solution for this problem is detailed in Chapter 4. 

Chapter 5 illustrates the testing results, and Chapter 6 concludes the report. 
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CHAPTER 2 SYSTEM MODEL FOR MOBILE EDGE LEARNING 

2.1 Distributed Machine Learning Preliminaries 

Distributed machine learning (DML) involves the operation of orchestrating one machine 

learning task over a system of K learners belonging to the set K = {1, 2, ..., K}. As clarified in 

Chapter 1, this approach was motivated by one of two scenarios, namely distributed datasets 

(DD) and task parallelization (TP). An illustration of the learning cycles for these two scenarios 

is given in Figure 2-1. The latter scenario fully encompasses the former but also adds the batch 

transfer component from the orchestrator to the learners. Although we mainly present the system 

model, formulation, and solution for the latter scenario, we show the variations in all these 

components when the former scenario is considered. 

 

Figure 2-1. Illustration of the two distinct approaches of distributed datasets and task parallelization 
 

Most DML approaches employ the stochastic gradient descent (SGD) method for 

updating the model because of large datasets and constraints on training time. This choice is also 

justified by the generality of this approach for centralized ML and its proven superior learning 

accuracy in comparison to deterministic gradient descent (GD) methods [23]. The ML model is 

updated by using a randomly picked subset or “batch” of the total dataset in one iteration of the 

SGD. Given the randomly picked batch of size dk data samples allocated to learner k (lk), k ∈ K, 

this learner updates the local model such that the local loss is minimized on the assigned batch 

[7]. The total size of all batches is denoted , which is usually preset by the 

orchestrator O, given learner k0s computational capabilities, the desired accuracy, and the time-

constraints of the training process. 

Each learner forwards the local model wk ∀ k ∈ K to the orchestrator after performing a 

certain number of local updates. The size of learner k’s model in bits will depend upon the ML 

model used, storage precision and compression strategy, and possibly the batch size. The 

orchestrator obtains the global model by aggregating all received local models. It then transmits 
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the global model to all learners, and the process cycles between local and global updates until the 

orchestrator ends the training either because of the exhaustion of resources or achievement of 

target performance. Readers interested in the local/global loss function minimization and local 

parameter aggregations are referred to Wang et al. [7], [17] for further details. 

In this study, we considered the setting in which all K learners perform a synchronized 

equal number of local updates per global update [1]. This setting is in contrast to the 

asynchronous setting, in which the number of local cycles per global update cycle is different or 

global aggregation is not synchronized [15]. The asynchronous setting is clearly more general 

and will be the subject of future work. We denote this fixed number by τ. In this setting, the 

global update only occurs periodically, and we refer to each interval between global updates as 

the global update period. For time-critical learning tasks (which are of more interest in edge 

environments), this period is typically preset by the orchestrator based on the time constraint on 

either finishing the process or reaching a certain performance measure. The orchestrator 

performs the aggregation of the parameters only after all learners have sent back their result 

within that global update period. Consequently, the global update period includes the time 

required for the transmission of the global model and/or data batches to the learners, execution of 

local updates, receipt of local models, and the global update. 

To this end, we define the time T as the duration needed to perform the first three steps of 

the process (i.e., excluding the global update process). We refer to the time T as the global cycle 

clock to differentiate it from the total global update period consisting of the global cycle clock 

and the global update time. The latter is omitted from our calculations, as it is not affected by the 

learners’ channel and computational heterogeneity, unlike the times of the other three processes. 

Furthermore, efficient over-the-air aggregation approaches [24], [25] can allow for the exclusion 

of this time. We care about this time T, as it includes processes fully dependent upon the batch 

sizes and number of local updates; most importantly it captures the heterogeneity of the learners’ 

computational capabilities and the underlying wireless communication links. Whereas these 

components may not be of significant influence when DML is executed over controlled wired 

and infrastructural servers, their high heterogeneity can tremendously impact the performance of 

DML when it is applied in wireless and mobile edge environments. This is where the MEL 

paradigm comes into play, as detailed in the next subchapter. 
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2.2 Transition to MEL 

Let us introduce the MEL system model by transitioning the aforementioned DML model 

to a heterogeneous wireless environment. We define the parameters that relate the number of 

local updates and dataset size to the heterogeneous computing and communication capacities of 

wireless edge learners and their impact on the global update clock duration. Figure 2-2 illustrates 

the considered MEL setting. Note again that the description focuses on the more general TP 

scenario, but all variations for the DD scenario are clarified whenever needed. 

 

Figure 2-2 System model of a MEL setting 
 

Let us define Bkdata as the batch size allocated to learner k in bits, which can be expressed 

as follows: 

  

where F is the number of features in the dataset, and Pd is the data bit precision. On the other 

hand, the size of learner k’s local model in bits (denoted by ) is given by: 

  

 

where Pm is the model bit precision. The variables Pd and Pm can represent a simple fixed-type, 

such as floating point, or may also include a compression ratio in case efficient storage strategies 

are used. As shown by Chiang and Zhang (2), the local parameter matrix size consists of two 

parts, one depending upon the batch size (represented by the term dkSd, where Sd is the number of 
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model coefficients related to each sample of the batch) and the other related to the constant size 

of the employed ML model (denoted by Sm). 

The orchestrator sends the bit concatenation of the data batch and initial global model to 

learner k with transmission power Pko using a wireless channel of bandwidth W and gain hko. (In 

the DD scenario, only the globally initialized model is sent.) Each learner randomly selects dk 

samples from its own stored dataset for each local update per global cycle. Once learner k 

receives this information, it re-sets the local model w˜k to the global model w provided by the 

orchestrator. It then performs τ training/learning updates of the local model by using its allocated 

batch. Typically in ML, the algorithm sequentially goes over all features of each data sample 

once in one iteration (or epoch). Consequently, the number of computations required per 

iteration Xk is equal to: 

  

 

which clearly depends upon the number of data samples dk assigned to each learner and the 

computational complexity Cm of the model. Once finished, learners send their local model w˜k ∀ k ∈ 

K to the orchestrator. The latter updates the global model w as described by Wang et al. [7] and 

sends it back, along with a new random batch of dk ∀ k ∈ K samples from the dataset to each 

learner. (In the DD setting, each learner selects a new random set of dk samples for the new 

cycle.) Then the process repeats. 

Given the above description, the times of each learner k, ∀ k ∈ K, whose sum must be 

bounded by the global update clock T, can be detailed as follows. The first time tSk ∀ k ∈ K 

comprises the time needed to send the allocated batch and global model w to learner k. tSk can thus 

be expressed as (where N0 is the noise power spectral density)5: 

  
 

 

The second time is τ times the duration needed by learner k to perform one local 

update. Defining fk as learner k’s local processor clock speed dedicated to the DML task, tCk can 

be expressed as: 
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The third and final time tRk is required for learner k to send its updated local model w˜k to 

the orchestrator. Assuming that the channels are reciprocal and do not change during the duration 

of one global update cycle, and assuming that learner k uses the same power Pko on its assigned 

channel, tRk can be computed as: 

 
Thus, the total time tk taken by learner k to complete the above three processes is equal to: 

 
As described above, tk ≤ T must hold ∀ k ∈ K for the orchestrator to successfully update the 

global model within the time constraint. 
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CHAPTER 3 PROBLEM FORMULATION 

As mentioned in Chapter 1, the objective of the work presented in this report was to 

optimize the task allocation (i.e., distributed batch sizes dk for each learner k and local model 

updates τ) such that it maximizes the accuracy of the DML process in each global cycle (and thus 

eventually the accuracy of the entire learning process) within a preset global cycle clock T. It has 

been well established in the literature that the loss function in the general SGD-based ML is 

minimized (and this typically maximizes the learning accuracy) by increasing the number of 

model updates [14]. When edge DML settings allow only a fixed number of global updates to be 

performed, increasing the number of local updates per global cycle can increase the accuracy 

[17]. The convergence proof for distributed SGD in the context of a wireless edge setting has 

already been provided in detail by Wang et al. [7], [17]. We used these results to show that our 

proposed MEL model will also converge. 

Let the loss function of the global model be given by F(w). Let us assume that this 

function is convex, ρ Lipschitz, and β-smooth (readers are referred to Wang et al. [17] and 

Mohammad et al. [26] for details on these assumptions and the parameters ρ and β). Assuming 

that a total of L updates are performed, the upper bound on the difference between the loss at 

update L and the loss of the optimal model w∗ can be defined as: 

 

The learning rate is given by η and φ = 1− ηβ2 . The function 

 is a parameter that bounds the local losses. For more details on δ and, the reader is referred to 

Wang et al. [17]. It is further assumed that 0 < ηβ < , and (ηβ + 1)τ ≥ ηβτ + 1. For 

simplicity, let us assume that the same number of local updates τ are performed by each learner 

in every global cycle. Hence, we can define the total updates L = Gτ for a fixed number of global 

updates G. Let us define , and C = ηβ +1. Using all of the above, we can define 

the upper bound on the loss as: 
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Because A + B(1 − C) ≥ 0 and the number of global updates G will be fixed, it is clear that the 

bound on the loss converges to zero as τ → ∞. 

Figure 3-1 shows the progress of the global validation loss for two different datasets 

under various scenarios. In the figure, the loss converges for both datasets, but it is closer to zero 

for one of them. More details about the performance, as well as the simulation environment, 

datasets, and ML models used, are provided in Chapter 5. 

 

 

Figure 3-1 Validation loss after each global update for: (a) the MNIST dataset and (b) the Pedestrian 
dataset. 

Given the above facts, maximizing the DML accuracy in our MEL setting can thus be re-

worded as optimizing the assigned batch sizes dk to each of the learners so as to maximize the 

number of local updates τ per global cycle, while bounding tk ∀ k by the preset global cycle clock 

T. The optimization variables in this problem are thus τ and dk ∀ k ∈ K. To simplify the notation in 

the remainder of this report, we can re-write the expression of tk in Equation (7) as a function of 

the optimization variables as follows: 
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The variables Ck2, Ck1, and Ck1 respectively represent the quadratic, linear, and constant 

coefficients of learner k in terms of the optimization variables τ and dk expressed as: 

 

Given the above information, the bound tk ≤ T ∀ k ∈ K can be written as follows: 

 

Recall that τ is the number of local model updates done by each learner in every global 

cycle, whereas T is the duration in which all steps of one global cycle must be completed, a.k.a 

global cycle time. Clearly the relationship between tk and the optimization variables dk and τ is 

quadratic. Furthermore, the optimization variables τ and dk ∀ k ∈ K are all non-negative integers. 

Consequently, the problem of interest in this report can be formulated as a quadratically 

constrained integer linear program (QCILP) as follows:8 

 
Constraint (15b) guarantees that tk ≤ T ∀ k ∈ K. Constraint (15c) ensures that the sum of 

local dataset sizes assigned to each learner is equal to the size of the total dataset required by the 

orchestrator to complete the learning task with the desired performance, given the time limits and 

its own computational and communication capabilities. Constraints (15d) and (15e) are simply 

non-negative integer constraints on the optimization variables. Therefore, the above problem is a 

QCILP, which is well-known to be non-deterministic polynomial-time (NP)-hard [27]. 
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15  

CHAPTER 4 PROPOSED SOLUTION 

4.1 Problem Relaxation 

As clarified in the previous chapter, the considered problem is a QCILP, which in general 

is NP-hard [27]. These problems can be solved in polynomial time by using certain heuristic 

techniques such as the branch-and-bound methods employed by commercially available solvers. 

However, these techniques are still highly complex and require a long execution time, which 

may not be suitable for edge environments. Therefore, we propose to simplify the problem by 

relaxing the integer constraints in equations (15d) and (15e), solving the relaxed problem, and 

finally rounding the obtained real results back into integers. The relaxed problem is given by: 

 

where the cases for τ and/or all dk’s being zero represent scenarios in which MEL will not be 

feasible, and thus the orchestrator must send the learning tasks to the edge or cloud server. The 

above resulting program becomes a quadratically constrained linear program (QCLP), which can 

be solved with techniques such as interior-point methods. There are efficient solvers that 

implement these approaches, such as OPTI [28]. 

On the other hand, the associated matrices for each of the quadratic constraints in the 

relaxed problems can be written in a symmetric form. Because these matrices will have two non-

zero values that are positive and equal, the associated eigenvalues will sum to zero. This means 

that these matrices are not positive semi-definite, and hence, the relaxed problem is non-convex. 

Consequently, we cannot derive the optimal solution of this problem analytically. Yet we can 

still derive upper bounds on the optimal variables and solution by using Lagrangian relaxation 

and the Karush-Kuhn-Tucker (KKT) conditions, which may further reduce the complexity in 

comparison to heuristic solvers without loss of performance. The next subchapter describes 

derivation of the upper bounds of the optimal variables by applying Lagrangian analysis and 

KKT conditions on the relaxed non-convex problem. 
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4.2 Upper Bounds Using the KKT Conditions 

The Langrangian function of the relaxed problem is expressed as: 

 
where λk ∀ k ∈ K, ν, and α0/αk ∀ k ∈ K, are the Lagrangian multipliers associated with the time 

constraints of the K learners in equation (16b), the total batch size constraint in (16c), and the 

non-negative constraints of all the optimization variables in (16d) and (16e), respectively. Using 

the well-known KKT conditions, the following theorem introduces upper bounds on the optimal 

variables of the relaxed problem. 

Theorem 1. The optimal value of the batch size allocated to each learner k ∈ K satisfies 

the following bound: 

 
Moreover, the analytical upper bound on the optimization variable τ belongs to the 

solution set of the polynomial given by: 

 

Proof: From the KKT optimality conditions, we have the following relations given by the 

following equations: 
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From the conditions in equation (20), we can see that the batch size at any learner k must 

satisfy equation (18). Moreover, it can be inferred from (22) that the bound in (18) holds with 

equality for any learner . The upper bound will be equal to the optimal solution 

(i.e. strong duality will hold) for some feasible τ∗ when, strictly speaking, λ∗k > 0 ∀ k ∈ K because in 

that case, the second term in (22) must be equal to zero. By re-writing the bound on  in (18) as 

an equality and substituting it back into (25), we have the following relation: 

 

The expression on the right-most hand-side has the form of a partial fraction expansion of 

a rational polynomial function of τ∗ where ak,bk ∈ R++. Therefore, we can expand equation (27) to 

the form shown in (28). Finally, the expanded form can be cleaned up in the form of a rational 

function with respect to τ∗, which is equal to the total dataset size d as shown in equation (29). 

Please note that the degrees of the numerator and denominator will be K − 1 and K, 

respectively. Furthermore, the poles of the system will be −bk, and since bk ≥ 0, the system will be 

stable. Furthermore, τ∗ = −bk is not a feasible solution for the problem because it is eliminated by 

the τ ≥ 0 constraint. Therefore, we can rewrite equation (29) as shown in (19). By solving this 

polynomial, we obtain a set of solutions for τ∗, and one of them is feasible. The problem being 

non-convex, this feasible solution τ∗ will constitute the upper bound to the solution of the relaxed 

problem. 
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As a last step, to ensure that the solution set is feasible, it must be noted that according to 

equations (23) and (24),  and αk∗ ∀ k must be equal to 0. Expanding the vanishing gradient 

condition in (26), it can be shown that the following two relations can be derived (representing K 

+ 1 equations): 

 

By setting  and αk∗ = 0 for k ∈ K, we can write λ∗k in terms of ν∗, as shown in equation 

(32), and substitute the resulting expression in (31) to find ν∗ by using the values of  and τ∗ 

obtained from equations (18) and (19), respectively. 

 

The values of λ∗k for k ∈ K can be obtained by back-substituting ν∗ in equation (32). As one 

can observe, as long as there exists a τ∗ greater than zero, ν∗ will be negative, and hence,  for k ∈ 

K will be strictly greater than zero. Hence, as long as there exists a τ∗ > 0 in the feasible set such 

that d∗k > 0, there will exist a set of λ∗k > 0 for k ∈ K. This fact can be used to verify the feasibility of 
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the solution. This step is also helpful when multiple values may exist of τ greater than zero for 

choosing the optimal τ∗. Although there was a possibility that the above bounds on d∗k ∀ k in 

equation (18) and solution the for τ∗ from (19) would require improved steps to reach feasibility, 

the extensive simulations presented in Chapter 5 demonstrated a lack of optimality gap, and the 

optimal variables were obtained directly from the derived expressions.  
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CHAPTER 5 SIMULATION RESULTS 

In this chapter, we describe tests of our proposed dynamic task allocation solutions for 

MEL in realistic learning and edge settings. More specifically, for both the TP and DD schemes, 

the numerical OPTI-based solution to the relaxed QCLP formulation (HA-TP/DD-Num) is 

compared to the analytical results (HA-TP/DD-Ana) from equations (18) and (19). We also show 

the merits of these two solutions in comparison to those of the heterogeneity-unaware (HU) (HU-

TP/DD) equal task allocation (ETA) scheme employed by Wang et al. [7] and Tuor et al. [16] by 

comparing the number of local updates and the validation accuracy. We first introduce the 

simulation environment and then present the validation results. The validation accuracy results 

presented for each individual scenario are an average of 10 runs.  

5.1 Simulation Environment 

A typical MEC consists of a cloudlet of heterogeneous computing devices connected via 

wireless channels. In our simulation, the edge nodes or learners were assumed to be located in an 

area with a 50-m radius for an 802.11 type environment and a 500-m radius for a cellular type 

environment. Half of the considered learners emulated the capacity of a typical fixed/portable 

computing device (e.g., laptops, tablets, roadside units. etc.) and the other half emulated the 

capacity of commercial micro-controllers (e.g., Raspberry Pi) that can be attached to different 

indoor or outdoor systems (e.g., smart meters, traffic cameras, onboard units). The settings thus 

emulated an edge environment that could be located either indoors or outdoors. The employed 

channel model for both the 802.11 and cellular type links is summarized in table 5-1. 

Table 5-1 List of simulation parameters 

Parameter Value 
Wi-Fi Attenuation Model 7 + 2.1log(R) dB [29] 
Cell Attenuation Model 128 + 37.1log(R) dB [5] 
Learner Bandwidth (W) 5 MHz 
Device proximity indoor (R0) 50m 
Device proximity outdoor (R0) 500m 
Max. Tran. Power (Pkmax) 23 dBm 
Noise Power Density (N0) -174 dBm/Hz 
Computation Capability (fk) 2.4 GHz and 700 MHz 
Pedestrian Dataset size (d) 9,000 images 
Pedestrian Dataset Features (F) 648 ( 18 × 36 ) pixels 
MNIST Dataset size (d) 60,000 images 
MNIST Dataset Features (F) 784 28 × 28 ) pixels 
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The main variable representing the computational capabilities of the learners is the 

processor clock speed fk ∀ k ∈ K. Although several factors can influence the computational 

capability, including number of cores, available memory, interconnect speeds, etc., we 

considered clock speed because it can be related directly to time and energy consumption [20]. In 

addition, clock speed is still used in state-of-the-art works to model the computational capability 

for MEC in general [30], [31] and federated learning (FL) environments in particular [20], [32]. 

The communication capability can be measured by the achievable rate, Rk ∀ k ∈ K which is defined 

as: 

 
The rate is influenced by the bandwidth W, each learner’s transmission power Pko ∀ k, and 

the channel gain hko ∀ k, which in turn is influenced mainly by the distance of the learner from the 

orchestrator Rk ∀ k because it is the inverse of the path loss defined in table 5-1. 

Once again, using the rate defined in equation (34) to model the channel was supported 

by the latest works in edge FL [19], [20], [21], [22]. The selection of the path-loss model was 

supported by previous works on MEC [30], [31], and the Wi-Fi model was adopted from 

previous empirical results [29]. One simplification in our model was that perfect parallel 

communication without interference was assumed, in contrast to some works on resource 

allocation for edge FL [19]. We justified this by stating that all schemes would be affected 

equally by channel degradation due to interference because resource allocation was not the focus 

of this work. The selection strategy for the remaining parameters was also supported by the 

above referenced works on MEC and wireless edge FL.  

It is assumed that at the start of each global cycle, learners send the information related to 

clock speed and transmission power that they can dedicate for the next cycle. This information is 

not incorporated into the communication time because the size of this packet in bits is negligible 

in comparison to the local ML model. As for the channel gain and learner distances, it is 

assumed that the edge servers can make use of the existing efficient channel estimation and 

triangulation algorithms. This task can be completed while the learners are doing their local 

updates just before the local model exchange. 

For simulating the learning environment, two datasets were considered: namely the 

Pedestrian [33] and MNIST [34] datasets. The Pedestrian dataset has 8,000 training images 
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consisting of 684 features (18 x 36 pixels). The ML model used for this dataset is a single-layer 

neural network with 300 neurons in the hidden layer. The set of parameters w = [w1,w2] is the 

concatenation of two sub-matrices, in which w1 is 300 × 648 and w2 is 300 × 2, neither of which 

depends upon the batch size (Sd = 0). Thus, the size of the model is 6,240,000 bits, which is fixed 

for all learners. The forward and backward passes require 781,208 floating point operations [35].  

Tthe MNIST dataset consists of 60,000 28x28 pixel images (784 features). The employed 

ML model for these data is a three-layer neural network with the following configuration: 

[784,300,124,60,10]. The model parameters include weight matrices with sizes of 784×300, 

784×300, 784×300, 300×124, 124×60, and 60×10, and bias vectors with lengths of 300, 124, 60, 

and 10, respectively. The model is 8,974,080 bits, and it requires 67,424,160 floating point 

operations [35]. 

5.2 Heterogeneity Analysis 

The previous chapters explained that the proposed MEL approach is heterogeneity aware 

(HA) because it allocates the number of local updates and batch sizes while considering the 

heterogeneous communication and computation environments. The most impactful variables on 

the rate heterogeneity are the transmission power and the distance because the bandwidth is 

constant (resource allocation has been studied in other works [19], [21], [22], [36]). Furthermore, 

other variables in the path loss model shown in table 5-1 are either constant or do not contribute 

as significantly. We assume that the maximum transmission power limit Pkmax is 23 dBm or 

0.1995W in linear scale. We further assume that each learner-orchestrator pair uses a lower 

power level per global cycle instead of the maximum allowed. To simulate a heterogeneous 

environment, the transmission power is drawn from the following distribution: 

 

The variable Pσ represents the maximum value by which the power can be reduced, and U 

∼ U{0,1} represents the uniformly distributed random variable on [0,1]. The focus of the proposed 

HA scheme is on optimal execution of the MEL task and not the optimization of the networking 

parameters. Hence, we used this approach of random power allocation. Other works have 

explicitly studied power and resource allocation for MEL. To simulate the heterogeneous co-

location of learners, the distances are simply drawn from Rk ∼ RσU. Rσ limits the learners to within 
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a smaller radius than the defined radius R0 for different environments, such as 50 m for indoors. 

In general, 0 ≤ Rσ ≤ R0. 

A similar strategy is used to set the computational capability of each device. Modern 

multicore processors usually offer a speedup over the advertised clock speeds, and new micro-

controllers have clock speeds of more than 1GHz as opposed to older versions that were in the 

range of a few hundred MHz. Therefore, the strategy used to model the processor clock involves 

choosing a reference speed followed by an additional amount to represent some speedup, as 

shown below: 

  

The reference clock is given by fref, whereas fσ represents the maximum additional clock 

speed. In the subsequent simulations, two sets of reference speeds are used: fref,1 = 2400MHz and 

fref,2 = 700MHz. The associated additional maximum amounts are fσ,1 and fσ,2, respectively. 

It is very difficult to exactly quantify the heterogeneity of the environment because of the 

complex relationships among all variables and the random nature of the important parameters 

such as the rate ρk, which are further dependent upon multiple random variables. In general, all 

variables are drawn from the uniform distribution in which the σ sub-scripted quantities represent 

the possible magnitude of change. To quantify the expected level of heterogeneity, we define a 

new metric called the heterogeneity factor Hfac as follows: 

 
Hfac is defined as the sum of the ratios of the ’σ’ variables to the reference values. A ratio 

must be defined because all parameters have different physical units, but their effect must be 

captured as each contributes to the heterogeneity level. The heterogeneity factor is not calibrated 

to have a value in the range [0,1], and a higher Hfac simply implies a more heterogeneous 

environment, which is expected to tolerate the seamless transitions between devices (i.e., context 

awareness). 

5.3 Achievable Updates versus Heterogeneity 

To perform the heterogeneity analysis, we vary Pσ from 0.01 to 0.10 in steps of 0.01 and 

Rσ from 5 m to 50 m in steps of 5 m. The reference radius R0 is set to 50 m because we are 

modeling an indoor, 802.11 type environment. The clock speed heterogeneity is emulated by 
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varying fσ,1 from 240 MHz to 2400 MHz in steps of 200 MHz and fσ,1 from 70 MHz to 700 MHz in 

steps of 70 MHz. The reference values and channel parameters are defined in table 5-1. 

We plot the achievable number of local updates τ versus the heterogeneity factor Hfac and 

compare the performance of the HA and HU schemes. The HA-TP and HA-DD both offer a gain 

on the number of achievable local updates per global cycle as Hfac increases. This gain can be 

observed specifically for values of Hfac ≥ 1. On the other hand, the achievable τ remains constant 

for the HU schemes with increasing Hfac implying that these are truly HU. Our HA schemes can 

perform flexible local dataset size allocations per global cycle to maximize local updates. In the 

following subchapters, we show that for fixed numbers of global cycles, this also translates to 

higher final validation accuracies and lower convergence times. 

For the remaining simulations, Rσ is equal to R0 (i.e., 50 m for 802.11 type and 500 m for 

cellular type environments), whereas Pσ is set to 0.05 W. The processor speedups are limited by 

setting fσ,1 = 240 MHz and fσ,2 = 100 MHz. These parameters are selected to have a Hfac = 1.50, which 

represents a high heterogeneity level in which the HA schemes provide noticeable gains, and 

enabling seamless context-aware communications is key. Moreover, this selection strategy truly 

tests the capacity of the HA schemes to offer a higher performance in comparison to the HU 

schemes because it supports lower speedups as well as lower transmission powers and channel 

gains. 

5.4 Simulation Results for Task-Parallelization 

Figure 5-1 shows the results from training with the MNIST dataset with the 

aforementioned deep neural network model. Figures 5-2a and 5-2b depict the number of local 

updates τ achieved by all tested approaches versus the number of learners (for T = 30s and T = 60s) 

and against the global cycle time (for K = 10 and K = 20), respectively. We can first make the 

trivial observation that τ increases with the number of learners K as the local dataset size 

sent/allocated to each node is smaller. We can also see that the performance of the OPTI-based 

numerical (HA-TP-Num) and UB-Analytical (HA-TPAna) solutions are identical for all 

simulated numbers of learners K and global cycle times T. We can finally observe from both sub-

figures that the dynamic heterogeneity aware (HA) task allocation scheme for MEL achieves a 

significantly larger number of local updates than the heterogeneity unaware (HU) scheme. For 

instance, the HA scheme makes it possible to perform six updates (as opposed to one) for 20 

learners, each with a global cycle time of 30s, a gain of 600 percent. In general, gains in the 
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region of 200 percent to 600 percent can be achieved by the HA-TP in comparison to the HU-TP. 

Another interesting result is that the performance of the HU scheme for T = 60s or K = 20 is 

actually much lower than the performance of our proposed solutions for T = 30s or K = 10, 

respectively. This implies that the HA schemes may achieve a higher learning accuracy than the 

HU scheme in half the time or with half the number of learners. 

 

 

Figure 5-1 Achievable local updates τ for the MNIST dataset versus the heterogeneity factor for different 
sets of learners and global cycle times. 

 

Figure 5-2 Achievable local updates τ for the MNIST dataset. (a) Performance comparison of all schemes 
for T =30 and 60 seconds vs K (b) Performance comparison of all schemes for K =10 and 20 vs T 
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Figure 5-3 illustrates the achievable number of local updates for the Pedestrian dataset. 

Figure 5-3a shows the number of local updates τ achieved by all tested approaches versus the 

number of learners for T = 15 and T = 5 seconds. Similar to the results of the MNIST dataset, the 

numerical solution (HA-TP-Num) matches the analytical solution (HA-TP-Ana) for all simulated 

scenarios. For both T = 5s and 15s, the HA schemes provide a significantly higher number of 

local updates. Another interesting result is that the performance of the HU-TP scheme for T = 15 

seconds is actually worse than that of the HA scheme with T = 5s, which implies that a higher 

accuracy can be achieved in half the time. Figure 5-3b illustrates the number of local updates τ 

versus the global cycle time T, for K = 10 and 20 learners. A system with K = 20 and T = 10s can 

give a 500 percent gain with the HA scheme. Further, the HA schemes can perform more local 

updates at lower T, even with fewer learners K than the HU scheme. 

 

 

Figure 5-3 Achievable local updates τ for the Pedestrian dataset. (a) Performance comparison of all 
schemes for T = 15 and 5 seconds vs K (b) Performance comparison of all schemes for K =10 and 20 vs T 

 

5.5 Learning Accuracy 

Figures 5-4 and 5-5 depict the progression of learning accuracy achieved by both our 

dynamic HA scheme and the HU scheme for the MNIST and Pedestrian datasets, respectively. 

Results showed that the HA scheme clearly outperforms the HU method by reaching a higher 

final accuracy of up to 0.6 percent for the MNIST dataset and 8 percent for the Pedestrian 

dataset. Furthermore, the HA-TP can reduce the convergence times up to 56 percent to reach 
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certain accuracy thresholds for the MNIST dataset and up to 50 percent for the Pedestrian dataset 

in comparison to the HU-TP. For example, for the MNIST dataset with K = 10 and T = 30s, an 

accuracy of 96.50 percent can be achieved in five global cycles by the HA-TP as opposed to the 

nine updates required by the HU-TP, which represents time savings of 2 minutes or 56 percent. 

This clearly exhibits the merits of the dynamic scheme in attaining learning goals in far less time. 

 

Figure 5-4 Validation accuracy progression for the MNIST dataset up to 10 global cycles for (a) K =20 
and T =12s, (b) K =10 and T =30s 

 

 

Figure 5-5 Validation accuracy progression for the Pedestrian dataset up to 20 global cycles for (a) K =20 
and T =5s, (b) K =20 and T =3s 
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5.6 Simulation Results for Distributed Datasets 

The next phase of simulations emulated the outdoor setting with cellular type links and 

examined each of the four different possible scenarios: DD with the proposed HA scheme (DD-

HA), DD with the HU scheme (DD-HU), TP with the proposed HA scheme (HA-TP), and TP 

with the HU (HU-TP) method. For the proposed HA schemes, it is observable that the analytical 

solutions (HA-DD-Ana and HA-TP-Ana) match the OPTI-based numerical solutions (HA-TP-

Num and HA-DD-Num). Although the TP and DD approaches are different and apply to 

different applications, we directly compare results for HA-DD and HA-TP to gain insights into 

our MEL model performance for the two distinct yet practical approaches. The parameters for 

the outdoor environment are also provided in table 5-1. 

Figure 5-6 and figure 5-7 illustrate the achievable number of local updates for all 

schemes for the MNIST and Pedestrian datasets, respectively; figures 5-6a and 5-7a plot the 

number of updates against the number of learners K, whereas figures 5-6b and 5-7b plot τ versus 

the global cycle time. In general, the DD approach achieves the highest number of local updates 

τ because it requires only the exchange of model parameters without any data transmission. As 

larger global update cycles are allowed, which may not always be the case with MEL, the 

performances of HA-DD and HA-TP become similar. The gain of HA-DD is more noticeable for 

the Pedestrian dataset because a less complex model is trained on a smaller dataset, as opposed 

to the MNIST dataset with the larger model. It can be inferred that the DD approach provides a 

higher gain over the TP approach when the size of the model is comparable to the assigned local 

dataset sizes, as will be the case when smaller models are used. In all cases, the results of HA-

DD/TP-Ana match the numerical solution, and HA-DD/TP-Num and HA-DD/TP both provide a 

higher set of local updates τ than HU-DD/TP, with gains ranging from 100 percent to 600 

percent. 
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Figure 5-6 Achievable local updates τ for the MNIST dataset (a) versus K for T =30s and T =60s, and (b) 
versus T for K = 10 and 20. 

 

Figure 5-7 Achievable local updates τ for the Pedestrian dataset versus K for (a) T =1s and T =2s and (b) 
versus T for K = 10 and 20. 

 

5.7 Learning Accuracy 

This section presents learning accuracy performance comparisons for all schemes. Figure 

5-8 compares the validation accuracy of HA-DD/TP and HU-DD/TP for the MNIST dataset 

when the global cycle time is set to 60 s and the system consists of ten learners. In general, the 

dynamic HA schemes are far superior to the HU approach, providing a final validation accuracy 
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of more than 5 percent. For example, the HA schemes reach an accuracy of 96 percent in four 

global cycles whereas the HU approaches require seven cycles, a reduction in time of about 43 

percent. We also notice that TP seems to work slightly better than the DD approach despite the 

possibility of more local updates (larger τ) in the latter scenario. One possible explanation is that 

the former approach resembles SGD more accurately because each learner uses a different 

random subset of data after every global update. In contrast, learners use all or part of the same 

subset of data for local updates in each global cycle in the DD scenario. 

 

Figure 5-8 MNIST validation accuracy results with K = 10 and T = 60s for DD and TP using both the 
dynamic HA and the HU schemes. 

 

Figure 5-9 compares the learning accuracy of all schemes for the Pedestrian dataset when 

the global cycle time is set to 5 s and the system consists of ten learners. Once again, the 

dynamic HA schemes are far superior to the HU approach and provide a higher final validation 

accuracy of up to 8 percent after 20 global updates. Furthermore, the HA schemes require less 

time to converge to certain accuracy thresholds. For example, the HA schemes can reach an 

accuracy of 76 percent in six global updates, which reduces the convergence time by 40 percent. 

We also notice that the DD approach reaches many accuracy milestones faster than TP, such as 

requiring 50 percent less time to reach 77 percent accuracy. One possible interpretation is that 

the difference in the average number of local updates per learner (more than five) makes up for 

the deterministic nature of the DD scenario. On the other hand, the TP approach seems to 

converge more smoothly toward the latter global update cycles, which may be due to the more 

“stochastic” nature of the data distribution process. 
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Figure 5-9 Pedestrian dataset validation accuracy results with K =10 and T =5s for DD and TP using both 
the dynamic HA and the HU schemes. 

Figure 5-10 illustrates this behavior more clearly for the HA schemes. There we can 

examine the accuracy progression with K = 10 and 20 learners and T reduced to 2s; the HU 

schemes fail with such stringent time constraints. The HA-TP scheme initially seems to converge 

faster to different accuracy thresholds; but the HA-DD takes over and converges to a higher final 

accuracy by 1 to 2 percent in both settings. It also appears that HA-DD works better for a larger 

system such as with 20 learners. One possible interpretation is that the increase in the achievable 

local updates is large enough to significantly improve accuracy. In contrast, the gain in the 

number of updates achieved by HA-TP does not offset the impact of smaller dataset sizes on 

validation accuracy. 

 
(a) K = 10 and T = 2s 

Figure 5-10 Comparison of both dynamic HA schemes HA-DD and HA-TP for T =2s and (a) K =10 and 
(b) K =20. 
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5.8 Superiority to Centralized Approaches 

This section highlights the benefits of the MEL model in comparison to those of 

centralized learning in terms of higher final validation accuracy achieved and describes the cost 

in terms of communication overhead. In the context of TP, centralized implies transmitting all 

data to the edge (or cloud) for analysis. In the context of DD, each learner sends the locally 

collected dataset to the orchestrator for training. The overall training process in both cases 

comprises three steps: transmission of the data from one or more learners to the orchestrator, ML 

model training on the complete data within the total training duration, and the return of the 

trained ML model to all learners. To emulate this process fairly, we set the processor clock speed 

to 2.4 GHz for an indoor environment (representing a peer learner or typical wireless routers) 

and 10 GHz for the outdoor setting, which represents the resources of a cellular base station. The 

channel parameters remain as described in chapters 5.1 and 5.2, whereas we employ exactly the 

same settings used to generate the validation accuracy results for figures 5-3 and 5-4 and figures 

5-7 through 5-9. The total training time allowed for the MNIST dataset is 10T and for the 

Pedestrian dataset is 20T. We also assess the communication overhead by providing the ratio of 

time spent in communication to the total time, which can be defined for each learner as 

. The average communication time across all learners can be obtained by 

. 

Table 5-2 clearly shows that the accuracy of centralized training is sub-par in comparison 

to the HA schemes in all cases. In fact, the centralized approach does not work at all for the 

Pedestrian dataset and provides an accuracy of 50 percent, which means the model is guessing 

randomly. Altering the model parameter—including hidden layer sizes, learning rate, optimizer, 

etc.—showed no improvement. These gains do incur a high communication overhead in which 

the HA-TP spends between 22 to 47 percent time in communication, whereas the HA-DD 

approaches require a communication overhead of 1 to 5 percent. The centralized schemes spend 

less than 1percent time communicating. However, it is worth emphasizing that the total training 

time allowed for the distributed MEL model accounts for the communication time and provides a 

higher final validation accuracy despite these overheads. It can be inferred that dividing the total 

dataset needed for the learning task across multiple learners significantly enhances the 

achievable total model updates and final accuracy. 
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 Table 5-2 Final accuracy and communication overhead of the HA schemes in comparison to those of 
centralized learning. 

5.9 Complexity Analysis 

As described in previous chapters, the problem of interest is a non-convex quadratically 

constrained linear program (QCLP) after relaxation, which can still be written in the form of a 

quadratically constrained quadratic program (QCQP). The solvers of the type we used typically 

employ a combination of interior-point (IP) methods (e.g., IPOPT) and heuristics. For a convex 

QCQP, IP methods can achieve a solution in polynomial time but are generally NP-hard for non-

convex problems. In contrast, our analytical solution requires the solving of a Kth degree 

polynomial. Many solvers, including MATLAB and LAPACK, find the roots using the Eigen-

values of the companion matrix, which can typically be achieved in polynomial time. 

The complexity of the polynomial solvers arises mainly from the QR factorization needed 

for diagonalization, and with fast DQR, algorithms can be achieved in O  [37]. The 

complexity for the Kth degree-polynomial in our solution can be given by O . The 

complexity of the IP method depends upon the number of the quadratic matrices, denoted by n, 

and the number of quadratic constraints in the problem, denoted by m. The complexity is given 

by O  [38], and for our problem, it can be expressed as  

O . The final expression can be expanded to the following form:  

O ; this is for convex problems. The complexity is actually non-

polynomial because the relaxed problem is still non-convex. 

Figure 5-11 better illustrates the complexity of the solution in terms of the execution 

times for each method. The results are presented for the HA-TP schemes. The simulations were 

Environment Dataset K T (s) TP Acc DD Acc Cen Acc TP Over DD Over Cen Over 
802.11 MNIST 20 12 97.31 % - 94.63 % 39.60 % - 1.25 % 
802.11 MNIST 10 30 97.41 % - 95.35 % 31.46 % - 0.38 % 
802.11 Pedestrian 20 3 81.86 % - 50.00 % 22.78 % - 2.73 % 
802.11 Pedestrian 10 5 80.76 % - 50.00 % 33.05 % - 6.83 % 
Cellular MNIST 10 60 97.41 % 97.40 % 95.27 % 14.69 % 1.47 % 0.02 % 
Cellular Pedestrian 10 5 80.76 % 80.34 % 50.00 % 19.62 % 2.30 % 0.01 % 
Cellular Pedestrian 10 2 80.15 % 80.83 % 50.00 % 42.70 % 4.52 % 0.89 % 
Cellular Pedestrian 20 2 79.38 % 81.98 % 50.00 % 46.03 % 4.74 % 0.79 % 
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run on a laptop with an 8-core Intel i7 processor, and the OPTI toolbox [28] was used for the 

numerical optimization. For each value of K, the execution time was reported for an average of 

100 runs, with different communication and computation capacities across each run. The 

complexity of the HA analytical schemes is on the order of O(K3), whereas it is constant for the 

HU schemes because the solution is a linear program. On the other hand, the complexity is much 

higher for the case in which a numerical solution is pursued. It is demonstrable that the 

complexity of our proposed analytical solution for the HA schemes is comparable to that of the 

HU scheme. Furthermore, it seems that increasing the global cycle time does not have any 

impact on the execution time requirements of the HU and HA-TP-Ana schemes. In contrast, a 

larger T reduces the execution time of the HATP-Num method because it allows the optimizer to 

reach the solution faster. 

 

Figure 5-11 HA optimization algorithm execution time comparisons using the MNIST dataset for the TP 
scheme versus K for T =30 and 60 seconds. 

 

The box plot better illustrates the behavior of the HU and HA-TP-Ana schemes. 

Interestingly, our proposed solution provides a lower execution time than the ETA approach up 

to certain values of K (K = 40) while simultaneously providing gains in accuracy and reductions in 

convergence times. Therefore, our proposed method improves the accuracy with a lower 

execution time for systems of a decent size. Furthermore, in the region where the execution time 

of our proposed HA method exceeds the HU scheme, the increase in processing time is much 

less than the reductions in convergence times. The execution time increases on the order of 

milliseconds, whereas the convergence time saved is on the order of seconds. 
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CHAPTER 6 SUMMARY AND CONCLUSION 

The work presented in this report extends research efforts toward establishing the novel 

MEL paradigm. This will enable the design of performance-guaranteed distributed learning 

solutions for wireless edge nodes with heterogeneous computing and communication capacities, 

allowing their implementation in environments where context aware CV2X communications is 

crucial. Two different but complementary scenarios for edge learning were proposed, distributed 

datasets (DD) and task parallelization (TP). This report focuses on exploring the dynamic task 

allocation solutions that would maximize the number of local learning iterations on distributed 

learners in either setting, while abiding by the global cycle clock of the orchestrator. The 

problem was formulated as an NP-hard QCILP problem, which was then relaxed into a non-

convex problem over real variables. Analytical upper bounds on the relaxed problem’s optimal 

solution were then derived and were found to provide solutions with a zero optimality-gap in 

multiple scenarios. Through extensive simulations using well-known datasets, the proposed HA 

solutions were shown both to achieve the same performance as the numerical solvers of the 

QCILP problem and to significantly outperform the HU approach. 
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